
OMNEST
Installation Guide
Version 6.0

Copyright © 1992-2021, András Varga and OpenSim Ltd.

Build: 220427-532e0deeba

CONTENTS

1 General Information 1
1.1 Introduction . 1
1.2 Supported Platforms . 1

2 Windows - Using the Installer 3
2.1 Supported Windows Versions . 3
2.2 Pre-installation Steps . 3
2.3 Installing OMNEST . 3
2.4 Using the IDE . 6
2.5 Using OMNEST with the MinGW GCC Compiler 7
2.6 Using OMNEST with Microsoft Visual Studio Clang compiler 8
2.7 Switching Compilers . 9
2.8 Additional Packages . 10

3 macOS 11
3.1 Supported Releases . 11
3.2 Installing the Prerequisite Packages . 11
3.3 Enabling Development Mode in Terminal . 11
3.4 Debugging Unsigned Code . 12
3.5 Running OMNEST on Apple Silicon . 13
3.6 Additional Steps Required on macOS to Use the Debugger 13
3.7 Downloading and Unpacking OMNEST . 13
3.8 Environment Variables . 14
3.9 Configuring and Building OMNEST . 14
3.10 Verifying the Installation . 15
3.11 Starting the IDE . 15
3.12 Using the IDE . 15
3.13 Reconfiguring the Libraries . 15
3.14 Additional Packages . 16

4 Linux 17
4.1 Supported Linux Distributions . 17
4.2 Installing the Prerequisite Packages . 17
4.3 Downloading and Unpacking . 18
4.4 Environment Variables . 18
4.5 Configuring and Building OMNEST . 19
4.6 Verifying the Installation . 20
4.7 Starting the IDE . 21
4.8 Using the IDE . 21
4.9 Reconfiguring the Libraries . 22
4.10 Additional Packages . 22

5 Ubuntu 25
5.1 Supported Releases . 25
5.2 Opening a Terminal . 25

i

5.3 Installing the Prerequisite Packages . 25

6 Fedora 33 29
6.1 Supported Releases . 29
6.2 Opening a Terminal . 29
6.3 Installing the Prerequisite Packages . 29

7 Red Hat 31
7.1 Supported Releases . 31
7.2 Opening a Terminal . 31
7.3 Installing the Prerequisite Packages . 31
7.4 SELinux . 32

8 OpenSUSE 33
8.1 Supported Releases . 33
8.2 Opening a Terminal . 33
8.3 Installing the Prerequisite Packages . 33

9 Generic Unix 35
9.1 Introduction . 35
9.2 Dependencies . 35
9.3 Determining Package Names . 36
9.4 Downloading and Unpacking . 36
9.5 Environment Variables . 37
9.6 Configuring and Building OMNEST . 37
9.7 Verifying the Installation . 39
9.8 Starting the IDE . 39
9.9 Optional Packages . 40

10 Build Options 41
10.1 Configure.user Options . 41
10.2 Moving the Installation . 42
10.3 Using Different Compilers . 43

ii

CHAPTER

ONE

GENERAL INFORMATION

1.1 Introduction

This document describes how to install OMNEST on various platforms. One chapter is dedi-
cated to each operating system.

1.2 Supported Platforms

OMNEST has been tested and is supported on the following operating systems:

• Windows on x86_64 architecture

• MacOS 10.15 and 11.x on x86_64 architecture

• Linux distributions covered in this Installation Guide

64-bit precompiled binaries are provided for the following platforms:

• Windows with Microsoft Visual C++ 2017 / ClangC2

• Windows with the bundled MinGW-w64 gcc/clang compiler

On other platforms, OMNEST needs to be compiled from source.

The Simulation IDE is supported on the following platforms:

• Linux x86_64/aarch64

• Windows x86_64

• MacOS 10.15 and 11.x (x86_64)

Note: Simulations can be run practically on any unix-like environment with a decent and
fairly up-to-date C++ compiler, for example gcc 8.x. Certain OMNEST features (Qtenv, par-
allel simulation, XML support, etc.) depend on the availability of external libraries (Qt, MPI,
LibXML, etc.)

IDE platforms are restricted because the IDE relies on a native shared library, which we
compile for the above platforms and distribute in binary form for convenience.

1

Installation Guide, Release 6.0

2 Chapter 1. General Information

CHAPTER

TWO

WINDOWS - USING THE INSTALLER

2.1 Supported Windows Versions

OMNEST supports 64-bit versions of Windows.

2.2 Pre-installation Steps

Download omnest-6.0-win64.exe from https://omnest.com.

Note: The MinGW GCC and Clang compilers are bundled with OMNEST. You do not need
to install any additional compiler to work with OMNEST. These comilers use the industry
standard Itanium C++ ABI (http://itanium-cxx-abi.github.io/cxx-abi/. If you would like to
use Microsoft ABI compliant compilers from MS Visual Studio or MS Build Tools, you should
install MSVC v142 - VS 2019 C++ x64/x86 build tools (from Build Tools 2019 or Visual Studio
2019) along with the Microsoft Windows 10 SDK and the C++ Clang tools for Windows (9.0.0 -
x64/x86) component, before installing OMNEST.

2.3 Installing OMNEST

Find the downloaded installation file using Windows Explorer, and double-click the file. This
will start the installation process.

Fig. 2.1: Starting the installer

To start the installation, accept the Licensing agreements:

3

https://omnest.com
http://itanium-cxx-abi.github.io/cxx-abi/

Installation Guide, Release 6.0

Fig. 2.2: License agreement

Select an installation target directory. Please make sure that the installation path does not
contain spaces.

Fig. 2.3: Selecting the installation directory

On the next page you have to specify which compiler you intend to use with OMNEST. This
can be the bundled MinGW GCC compiler (recommended), or the Clang compiler from Mi-
crosoft Visual Studio/MS Build Tools 2019. If you do not install any pre-built binary pack-
ages (none), you have to compile OMNEST manually after the installation has finished.

4 Chapter 2. Windows - Using the Installer

Installation Guide, Release 6.0

Fig. 2.4: Compiler selection

On the last page, you can optionally create program launcher icons for your desktop, too.

Fig. 2.5: Installation options

After this step the installation process starts, and all files required by OMNEST will be copied
to the installation folder.

2.3. Installing OMNEST 5

Installation Guide, Release 6.0

Fig. 2.6: Installation options

Finally, a new Start Menu folder is created (along with desktop shortcuts). You can start the
OMNEST Shell or the OMNEST IDE by clicking on the icons.

Tip: If you want to work from the command line, use the provided OMNEST Shell. This shell
sets all environment variables and the path necessary to run OMNEST simulations.

2.4 Using the IDE

Once the installation has finished, you can start using OMNEST by launching the IDE. The
IDE can be launched with the corresponding Start Menu or desktop shortcut, or by typing
omnest at the OMNEST Shell prompt.

In the IDE, each simulation example is a separate project. To build an example, open its
project using the context menu (right-click, Open Project), and click the Run button on the
toolbar. To rebuild the example, first make sure that the correct configuration is selected
(context menu, Build Configurations > Set Active), then choose Clean Project and Build Project
from the context menu.

The IDE is documented in detail in the User Guide.

6 Chapter 2. Windows - Using the Installer

Installation Guide, Release 6.0

2.5 Using OMNEST with the MinGW GCC Compiler

The bundled MinGW GCC compiler is preconfigured for OMNEST. Note that only the bundled
version of MinGW has been tested and is supported with OMNEST.

If you have installed the pre-compiled binary package for the MinGW compiler, make sure that
the <installdir>/bin and <installdir>/lib directories contain the correct executables
and libraries. You should see libopp*.dll files in the <installdir>/bin directory and
similarly named *.a files in <installdir>/lib. If you do not see them, check the “Switching
Compilers” or the “Recompiling OMNEST” section before proceeding.

To test the installation, try to run models from the <installdir>/samples directory.

2.5.1 Compiling Simulations on the Command Line

To build simulations from the command line, the following directories have to be included in
the path: <installdir>\bin, <installdir>\tools\win64\usr\bin and <installdir>\
tools\win64\mingw64\bin.

OMNEST provides a OMNEST MinGW Shell window (mingwenv.cmd), which sets the path and
environment variables.

Before compiling a model, you must generate a Makefile for it. Change into the model
directory and execute:

$ opp_makemake -f --deep

This command will generate a Makefile that can compile all your .cc files in the model
directory.

$ make

will compile and build your project.

Tip: Be sure to check the Manual for all the options and features of opp_makemake.

2.5.2 Recompiling OMNEST

Open the OMNEST MinGW Shell window and type:

$./configure

This command will detect all required software on your machine, and configure your build
environment. The configuration process creates a file called Makefile.inc in your installa-
tion root. This file will be included in all of your makefiles, and contains all variables, paths
and settings for the build process.

If you do not have binary files in your bin directory (no pre-compiled binaries were installed),
you should compile OMNEST now manually by typing:

$ make

Tip: The above command creates both debug and release versions of the libraries. If you
want to create only one type, use the make MODE=debug or make MODE=release commands.

2.5. Using OMNEST with the MinGW GCC Compiler 7

Installation Guide, Release 6.0

Tip: If you have a dual-core machine, you can speed up the compilation by adding the -j2
option to the make command line, which enables parallel build support.

2.6 Using OMNEST with Microsoft Visual Studio Clang compiler

OMNEST comes with pre-built binaries for the Clang compiler. If you have installed the pre-
compiled binary package for the Clang compiler, make sure that the <installdir>/bin and
<installdir>/lib directories contain the correct executables and libraries. You should see
opp*.dll files in the <installdir>/bin directory and opp*.lib files in the <installdir>/
lib directory. If you do not see them, check the “Switching Compilers” or the “Recompiling
OMNEST” section before proceeding.

To test the installation try to run models from the <installdir>/samples directory.

Note: Be sure to modify the path to point to your Visual Studio installation
(VS_INSTALL_DIR) and Clang compiler version (ClangToolsInstallDir) in the <installdir>\
vcenv.cmd file. By default, the file is using the MS Build Tools 2019 installation on your C:
drive. If you have installed Visual Stuido instead of the Build Tools package, you must modify
this file.

Note: For now, the OMNEST IDE cannot be used for debugging Visual C++ binaries. This is
a limitation of the Eclipse CDT component that OMNEST build on. We recommend that you
use the Visual Studio IDE for debugging.

2.6.1 Compiling Simulations on the Command Line (MS ABI)

To build simulations from the command line, the following directories have to be included
in the path: <installdir>\bin, <installdir>\tools\win64\usr\bin, <installdir>\
tools\win64\visualc\bin plus the directories required by Visual Studio Clang itself. To
include the required Visual C++ directories, VC provides a batch file called vcvars64.bat in
its bin directory.

OMNEST provides a OMNEST Visual C++ Shell window (vcenv.cmd), which sets the path and
environment variables and properly class also the vcvars64.bat file.

Note: You may need to adjust your Visual Studio/MS Build Tools and Clang installation
directory in the vcenv.cmd file.

Before compiling a model, you must generate a Makefile for it. Change into the model
directory and execute:

> opp_makemake -f --deep

This command will generate a Makefile file that can compile all your .cc files in the model
directory.

> make

will build your project.

8 Chapter 2. Windows - Using the Installer

Installation Guide, Release 6.0

2.6.2 Compiling Simulations from the IDE

Before compiling simulations from the IDE, make sure that the correct build configuration
(debug or release) is selected then choose Build in the Project menu.

2.6.3 Recompiling OMNEST

Open the OMNEST Visual C++ Shell window (vcenv.cmd). Make sure that USE_MS_ABI is set
to yes (and uncommented) in the configure.user file and configure the installation with
./configure.

If you do not have binary files in your bin directory (no pre-compiled binaries were installed),
you should compile OMNEST now manually by typing:

> make

2.7 Switching Compilers

If you want to switch compilers after you have installed OMNEST, we recommend uninstalling
the software and reinstalling it with the selected new compiler.

It is also possible to manually change the compiler used:

First you have to delete all executable files generated by that compiler.

Open the OMNEST MinGW Shell window (mingwenv.cmd) and clean OMNEST by executing
the following command in <installdir>

$ make cleanall

Pre-built binaries are stored in the <installdir>/store directory. You must extract their
content in the root OMNEST directory. Execute:

$ 7za x store/mingw-bin.7z

or

$ 7za x store/clangc2-bin.7z

depending on your compiler. After extracting the executables you will be able to run the
sample simulations immediately.

Finally, you may need to modify the shortcut that is used to start the IDE. Open the shortcut
properties and change the command to “mingw.env ide” or “vcenv.cmd ide” depending on the
compiler you intend to use.

Note: Be sure to modify the path to your Visual Studio installation (VS_INSTALL_DIR) and
Clang compiler version (ClangToolsInstallDir) in the <installdir>\vcenv.cmd file if you are
switching between different versions of Visual Studio or MS Build Tools.

2.7. Switching Compilers 9

Installation Guide, Release 6.0

2.8 Additional Packages

Note that Doxygen and GraphViz are already included in the OMNEST package, and will be
used by the IDE automatically.

2.8.1 MPI

MPI is only needed if you would like to run parallel simulations.

There are several MPI implementations for Windows, and OMNEST does not mandate any
specific one. We recommend DeinoMPI, which can be downloaded from http://mpi.deino.net.

DeinoMPI ships with binaries compiled with MSVC. After installing DeinoMPI, adjust the
MPI_DIR setting in configure.user, and recompile OMNEST with the version of MSVC that
matches the DeinoMPI binaries.

Note: In general, if you would like to run parallel simulations, we recommend that you use
Linux, macOS, or another unix-like platform.

2.8.2 Akaroa

Akaroa 2.6.7, which is the latest version at the time of writing, does not support Windows.
You may try to port it using the porting guide from the Akaroa distribution.

2.8.3 SystemC

To enable SystemC integration, set WITH_SYSTEMC=yes in the configure.user file, run
configure and then rebuild your project. You can check the systemc examples in the
samples/systemc-embedding directory.

10 Chapter 2. Windows - Using the Installer

http://mpi.deino.net

CHAPTER

THREE

MACOS

3.1 Supported Releases

This chapter provides additional information for installing OMNEST on macOS.

The following releases are covered:

• macOS 11.x

3.2 Installing the Prerequisite Packages

Install the command line developer tools for macOS (compiler, debugger, etc.)

$ xcode-select --install

Installing additional packages will enable more functionality in OMNEST; see the Additional
packages section at the end of this chapter.

3.3 Enabling Development Mode in Terminal

MacOS has a strict default security policy preventing the execution of unsigned code. This
behavior often interferes with the development process so you must explicitly allow running
unsigned code from a Terminal. On the System Preferences / Security and Privacy / Privacy
tab, select Development Tools on the left side, unlock the panel with the lock icon on the
bottom left and select the Terminal app on the right side to override the default security
policy for the Terminal app.

11

Installation Guide, Release 6.0

Fig. 3.1: Enable Running Unsigned Code in Terminal

Note: If you do not see the Terminal item in the Development Tools section, you should exe-
cute spctl developer-mode enable-terminal in the terminal and then restart System Preferences
applet.

3.4 Debugging Unsigned Code

Even if you have enabled development mode in the terminal, missing code signatures will
still cause problems during debugging, because the debugged process is started by the IDE,
not the terminal. To be able to debug, you must disable code signature checking globally by
typing:

$ sudo spctl --master-disable

After issuing the above command go to System Preferences / Security and Privacy / General
and select Any at the bottom of the dialog. After restarting your terminal application, you will
be able to debug your unsigned simulation models.

12 Chapter 3. macOS

Installation Guide, Release 6.0

3.5 Running OMNEST on Apple Silicon

OMNEST does not currently support the Apple M1 processor natively, but you can run the
x86_64 version using the Rosetta 2 emulator. To run OMNEST under emulation, open a
terminal window, then execute:

$ arch -x86_64 /bin/zsh --login

After this, follow the normal installation instructions and be sure to execute all commands in
this terminal.

Note: The above command may graphically prompt you to allow the installation of the
emulator component. You can also manually trigger the installation from the command line
using the following command: softwareupdate –install-rosetta –agree-to-license.

Note: Typing source setenv will launch the x86_64 emulator automatically for you. Make
sure to execute all commands from that terminal.

3.6 Additional Steps Required on macOS to Use the Debugger

The Command Line Developer Tools package contains the lldb debugger. OMNEST 6.0
and later contains the necessary driver binary (lldbmi2) that allows lldb to be used in the
OMNEST IDE. If you are upgrading from an earlier version of OMNEST, be sure to delete and
recreate all Launch Configurations in the IDE. This is required because older Launch Con-
figurations were using gdb as the debugger, but the new IDE uses lldbmi2 as the debugger
executable.

On the first debug session the OS may prompt you to allow debugging with the lldb exe-
cutable.

3.7 Downloading and Unpacking OMNEST

Download OMNEST from https://omnest.com. Make sure you select to download the macOS
specific archive, omnest-6.0-macos-x86_64.tgz.

Copy the archive to the directory where you want to install it. This is usually your home
directory, /Users/<you>. Open a terminal, and extract the archive using the following com-
mand:

$ tar zxvf omnest-6.0-macos-x86_64.tgz

A subdirectory called omnest-6.0 will be created, containing the simulator files.

Alternatively, you can also unpack the archive using Finder.

Note: The Terminal can be found in the Applications / Utilities folder.

3.5. Running OMNEST on Apple Silicon 13

https://omnest.com

Installation Guide, Release 6.0

3.8 Environment Variables

In general OMNEST requires that certain environment variables are set and the omnest-6.
0/bin directory is in the PATH. Source the setenv script to set up all these variables.

$ cd omnest-6.0
$ source setenv

To set the environment variables permanently, edit .profile, .zprofile or .zshenv in your
home directory and add a line something like this:

[-f "$HOME/omnest-6.0/setenv"] && source "$HOME/omnest-6.0/setenv"

3.9 Configuring and Building OMNEST

Check configure.user to make sure it contains the settings you need. In most cases you
don’t need to change anything in it.

In the top-level OMNEST directory, type:

$./configure

The configure script detects installed software and configuration of your system. It writes
the results into the Makefile.inc file, which will be read by the makefiles during the build
process.

Note: If there is an error during configure, the output may give hints about what went
wrong. Scroll up to see the messages. (You may need to increase the scrollback buffer size
of the terminal and re-run ./configure.) The script also writes a very detailed log of its
operation into config.log to help track down errors. Since config.log is very long, it is
recommended that you open it in an editor and search for phrases like error or the name of
the package associated with the problem.

When ./configure has finished, you can compile OMNEST. Type in the terminal:

$ make

Tip: To take advantage of multiple processor cores, add the -j4 option to the make command
line.

Note: The build process will not write anything outside its directory, so no special privileges
are needed.

Tip: The make command will seemingly compile everything twice. This is because both
debug and optimized versions of the libraries are built. If you only want to build one set of
the libraries, specify MODE=debug or MODE=release:

14 Chapter 3. macOS

Installation Guide, Release 6.0

3.10 Verifying the Installation

You can now verify that the sample simulations run correctly. For example, the aloha simu-
lation is started by entering the following commands:

$ cd samples/aloha
$./aloha

By default, the samples will run using the Qtenv environment. You should see nice gui
windows and dialogs.

3.11 Starting the IDE

OMNEST comes with an Eclipse-based simulation IDE.

Start the IDE by typing:

$ omnest

If you would like to be able to launch the IDE via Applications, the Dock or a desktop shortcut,
do the following: open the omnest-6.0 folder in Finder, go into the ide subfolder, create an
alias for the omnest program there (right-click, Make Alias), and drag the new alias into the
Applications folder, onto the Dock, or onto the desktop.

Alternatively, run one or both of the commands below:

$ make install-menu-item
$ make install-desktop-icon

which will do roughly the same.

3.12 Using the IDE

When you try to build a project in the IDE, you may get the following warning message:

Toolchain “. . . ” is not supported on this platform or installation. Please go to the
Project menu, and activate a different build configuration. (You may need to switch
to the C/C++ perspective first, so that the required menu items appear in the
Project menu.)

If you encounter this message, choose Project > Properties > C/C++ Build > Tool Chain Editor
> Current toolchain > GCC for OMNEST.

The IDE is documented in detail in the User Guide.

3.13 Reconfiguring the Libraries

If you need to recompile the OMNEST components with different flags (e.g. different optimiza-
tion), then change the top-level OMNEST directory, edit configure.user accordingly, then
type:

$./configure
$ make clean
$ make

3.10. Verifying the Installation 15

Installation Guide, Release 6.0

Tip: To take advantage of multiple processor cores, add the -j4 option to the make command
line.

If you want to recompile just a single library, then change to the directory of the library (e.g.
cd src/sim) and type:

$ make clean
$ make

By default, libraries are compiled in both debug and release mode. If you want to make
release or debug builds only, use:

$ make MODE=release

or

$ make MODE=debug

By default, shared libraries will be created. If you want to build static libraries, set
SHARED_LIBS=no in configure.user and re-configure your project.

Note: The built libraries and programs are immediately copied to the lib/ and bin/ subdi-
rectories.

3.14 Additional Packages

3.14.1 OpenMPI

MacOS does not come with OpenMPI, so you must install it manually. You can install it
from the Homebrew repo (http://brew.sh) by typing brew install open-mpi. In this case,
you have to manually set the MPI_CFLAGS and MPI_LIBS variables in configure.user and
re-run ./configure.

3.14.2 Akaroa

Akaroa 2.7.9, which is the latest version at the time of writing, does not support macOS. You
may try to port it using the porting guide from the Akaroa distribution.

SystemC

To enable SystemC integration, set WITH_SYSTEMC=yes in the configure.user file, run
configure and then rebuild your project. You can check the systemc examples in the
samples/systemc-embedding directory.

16 Chapter 3. macOS

http://brew.sh

CHAPTER

FOUR

LINUX

4.1 Supported Linux Distributions

This chapter provides instructions for installing OMNEST on selected Linux distributions:

• Ubuntu 20.04 and 22.4 LTS

• Fedora Workstation 31

• Red Hat Enterprise Linux Desktop Workstation 8.x

• OpenSUSE Leap 15.3

This chapter describes the overall process. Distro-specific information, such as how to install
the prerequisite packages, are covered by distro-specific chapters.

Note: If your Linux distribution is not listed above, you still may be able to use some
distro-specific instructions in this Guide.

Ubuntu derivatives (Ubuntu instructions may apply):

• Kubuntu, Xubuntu, Edubuntu, . . .

• Linux Mint

Some Debian-based distros (Ubuntu instructions may apply, as Ubuntu itself is based on
Debian):

• Knoppix and derivatives

• Mepis

Some Fedora-based distros (Fedora instructions may apply):

• Simplis

• Eeedora

4.2 Installing the Prerequisite Packages

OMNEST requires several packages to be installed on the computer. These packages include
the C++ compiler (gcc or clang) and several other libraries and programs. These packages can
be installed from the software repositories of your Linux distribution.

See the chapter specific to your Linux distribution for instructions on installing the
packages needed by OMNEST.

Generally, you will need superuser permissions to install packages.

17

Installation Guide, Release 6.0

Not all packages are available from software repositories; some (optional) ones need to be
downloaded separately from their web sites, and installed manually. See the section Addi-
tional Packages later in this chapter.

4.3 Downloading and Unpacking

Download OMNEST from https://omnest.com. Make sure you select to download the Linux
specific archive, omnest-6.0-linux-x86_64.tgz.

Copy the archive to the directory where you want to install it. This is usually your home
directory, /home/<you>. Open a terminal, and extract the archive using the following com-
mand:

$ tar xvfz omnest-6.0-linux-x86_64.tgz

This will create an omnest-6.0 subdirectory with the OMNEST files in it.

Note: On how to open a terminal on your Linux installation, see the chapter specific to your
Linux distribution.

4.4 Environment Variables

In general OMNEST requires that certain environment variables are set and the omnest-
6.0/bin directory is in the PATH. Source the setenv script to set up all these variables.

$ cd omnest-6.0
$ source setenv

To set the environment variables permanently, edit .profile or .zprofile in your home
directory and add a line something like this:

[-f "$HOME/omnest-6.0/setenv"] && source "$HOME/omnest-6.0/setenv"

Note: If you use a shell other than bash, consult the man page of that shell to find out which
startup file to edit, and how to set and export variables.

Note: If you use a shell other than bash, consult the man page of that shell to find out which
startup file to edit, and how to set and export variables.

Note that all Linux distributions covered in this Installation Guide use bash unless the user
has explicitly selected another shell.

18 Chapter 4. Linux

https://omnest.com

Installation Guide, Release 6.0

4.5 Configuring and Building OMNEST

In the top-level OMNEST directory, type:

$./configure

The configure script detects installed software and configuration of your system. It writes
the results into the Makefile.inc file, which will be read by the makefiles during the build
process.

Fig. 4.1: Configuring OMNEST

Note: If there is an error during configure, the output may give hints about what went
wrong. Scroll up to see the messages. (Use Shift+PgUp; you may need to increase the scroll-
back buffer size of the terminal and re-run ./configure.) The script also writes a very
detailed log of its operation into config.log to help track down errors. Since config.log is
very long, it is recommended that you open it in an editor and search for phrases like error
or the name of the package associated with the problem.

When ./configure has finished, you can compile OMNEST. Type in the terminal:

$ make

4.5. Configuring and Building OMNEST 19

Installation Guide, Release 6.0

Fig. 4.2: Building OMNEST

Tip: To take advantage of multiple processor cores, add the -j8 option to the make command
line.

Note: The build process will not write anything outside its directory, so no special privileges
are needed.

Tip: The make command will seemingly compile everything twice. This is because both
debug and optimized versions of the libraries are built. If you only want to build one set of
the libraries, specify MODE=debug or MODE=release:

4.6 Verifying the Installation

You can now verify that the sample simulations run correctly. For example, the aloha simu-
lation is started by entering the following commands:

$ cd samples/aloha
$./aloha

By default, the samples will run using the Qtenv environment. You should see nice gui
windows and dialogs.

20 Chapter 4. Linux

Installation Guide, Release 6.0

4.7 Starting the IDE

You can launch the OMNEST Simulation IDE by typing the following command in the termi-
nal:

$ omnest

Fig. 4.3: The Simulation IDE

If you would like to be able to access the IDE from the application launcher or via a desktop
shortcut, run one or both of the commands below:

$ make install-menu-item
$ make install-desktop-icon

Or add a shortcut that points to the omnest program in the ide subdirectory by other means,
for example using the Linux desktop’s context menu.

4.8 Using the IDE

When you try to build a project in the IDE, you may get the following warning message:

Toolchain “. . . ” is not supported on this platform or installation. Please go to the
Project menu, and activate a different build configuration. (You may need to switch
to the C/C++ perspective first, so that the required menu items appear in the
Project menu.)

If you encounter this message, choose Project > Properties > C/C++ Build > Tool Chain Editor
> Current toolchain > GCC for OMNEST.

The IDE is documented in detail in the User Guide.

4.7. Starting the IDE 21

Installation Guide, Release 6.0

4.9 Reconfiguring the Libraries

If you need to recompile the OMNEST components with different flags (e.g. different optimiza-
tion), then change the top-level OMNEST directory, edit configure.user accordingly, then
type:

$./configure
$ make cleanall
$ make

If you want to recompile just a single library, then change to the directory of the library (e.g.
cd src/sim) and type:

$ make clean
$ make

By default, libraries are compiled in both debug and release mode. If you want to make
release or debug builds only, use:

$ make MODE=release

or

$ make MODE=debug

By default, shared libraries will be created. If you want to build static libraries, set
SHARED_LIBS=no in configure.user and re-configure your project.

Note: For detailed description of all options please read the Build Options chapter.

4.10 Additional Packages

Note that at this point, MPI, Doxygen and GraphViz have been installed as part of the prereq-
uisites.

4.10.1 Qtenv

OMNEST comes with a Qt based runtime environment that supports also 3D visualization.
The new environment can be disabled by the WITH_QTENV=no variable in the configure.user
file and then running ./configure.

4.10.2 Akaroa

Linux distributions do not contain the Akaroa package. It must be downloaded, compiled and
installed manually before installing OMNEST.

Note: As of version 2.7.9, Akaroa only supports Linux and Solaris.

Download Akaroa 2.7.9 from: http://www.cosc.canterbury.ac.nz/research/RG/net_sim/
simulation_group/akaroa/download.chtml

Extract it into a temporary directory:

22 Chapter 4. Linux

http://www.cosc.canterbury.ac.nz/research/RG/net_sim/simulation_group/akaroa/download.chtml
http://www.cosc.canterbury.ac.nz/research/RG/net_sim/simulation_group/akaroa/download.chtml

Installation Guide, Release 6.0

$ tar xfz akaroa-2.7.9.tar.gz

Configure, build and install the Akaroa library. By default, it will be installed into the /usr/
local/akaroa directory.

$./configure
$ make
$ sudo make install

Go to the OMNEST directory, and (re-)run the configure script. Akaroa will be automatically
detected if you installed it to the default location.

SystemC

To enable SystemC integration, set WITH_SYSTEMC=yes in the configure.user file, run
configure and then rebuild your project. You can check the systemc examples in the
samples/systemc-embedding directory.

4.10.3 Nemiver

Nemiver is the default debugger for the OMNEST just-in-time debugging facility (see the
debugger-attach-on-startup and debugger-attach-on-error configuration options).
Nemiver can be installed via the package manager in most Linux distros. For example, on
Ubuntu and other Debian-based distros you can install it by the following command:

$ sudo apt-get install nemiver

4.10. Additional Packages 23

Installation Guide, Release 6.0

24 Chapter 4. Linux

CHAPTER

FIVE

UBUNTU

5.1 Supported Releases

This chapter provides additional information for installing OMNEST on Ubuntu Linux instal-
lations. The overall installation procedure is described in the Linux chapter.

The following Ubuntu releases are covered:

• Ubuntu 20.04 LTS or 22.04 LTS

They were tested on the following architectures:

• Intel/AMD 64-bit

The instructions below assume that you use the default desktop and the bash shell. If you use
another desktop environment or shell, you may need to adjust the instructions accordingly.

5.2 Opening a Terminal

Type terminal in your program launcher and click on the Terminal icon.

5.3 Installing the Prerequisite Packages

You can perform the installation using the graphical user interface or from the terminal,
whichever you prefer.

5.3.1 Command-Line Installation

Before starting the installation, refresh the database of available packages. Type in the ter-
minal:

$ sudo apt-get update

To install the required packages, type in the terminal:

$ sudo apt-get install build-essential clang lld gdb bison flex perl \
python3 python3-pip qtbase5-dev qtchooser qt5-qmake qtbase5-dev-tools

→˓\
libqt5opengl5-dev libxml2-dev zlib1g-dev doxygen graphviz

→˓libwebkit2gtk-4.0-37
$ python3 -m pip install --user --upgrade numpy pandas matplotlib scipy

→˓seaborn posix_ipc

25

Installation Guide, Release 6.0

To use Qtenv with 3D visualization support, install the development packages for Open-
SceneGraph (3.4 or later) and the osgEarth (2.9 or later) packages. (You may need to enable
the Universe software repository in Software Sources. and also enable WITH_OSGEARTH in
configure.user.)

$ sudo apt-get install openscenegraph-plugin-osgearth libosgearth-dev

Warning: Ubuntu 22.04 no longer provides the libosgearth package so osgEarth must be
installed from sources. OpenSceneGraph can still be installed using sudo apt-get install
libopenscenegraph-dev.

Warning: The IDE requires GLIBC 2.28 version or later, so you Ubuntu 18.04 is NOT
supported because it comes with GLIBC 2.27.

Note: You may opt to use gcc instead of the clang compiler and/or use the system default
linker instead of lld by setting the PREFER_CLANG and PREFER_LLD variables in the config-
ure.user file. In this case, you don’t have to install the clang and lld packages. If you do not
need the 3D visualization capabilities, you can disable them in the configure.user file, too.

To enable the optional parallel simulation support you will need to install the MPI packages:

$ sudo apt-get install mpi-default-dev

At the confirmation questions (Do you want to continue? [Y/N]), answer Y.

Fig. 5.1: Command-Line Package Installation

26 Chapter 5. Ubuntu

Installation Guide, Release 6.0

5.3.2 Graphical Installation

Open the dash and type Synaptic.

Since software installation requires root permissions, Synaptic will ask you to type your
password.

Search for the following packages in the list, click the squares before the names, then choose
Mark for installation or Mark for upgrade.

If the Mark additional required changes? dialog comes up, choose the Mark button.

The packages:

• required: build-essential, gcc, g++, bison, flex, perl, qtbase5-dev, qtchooser, qt5-qmake,
qtbase5-dev-tools, python3, doxygen, graphviz, libwebkit2gtk-4.0-37

• recommended: libopenscenegraph-dev, openscenegraph-plugin-osgearth, libosgearth-
dev, mpi-default-dev, libxml2-dev, zlib1g-dev

Fig. 5.2: Synaptic Package Manager

Click Apply, then in the Apply the following changes? window, click Apply again. In the
Changes applied window, click Close.

After this, you still have to install some required Python packages from command line:

$ python3 -m pip install --user --upgrade numpy pandas matplotlib scipy
→˓seaborn posix_ipc

5.3. Installing the Prerequisite Packages 27

Installation Guide, Release 6.0

5.3.3 Post-Installation Steps

Setting Up Debugging

By default, Ubuntu does not allow ptracing of non-child processes by non-root users.
That is, if you want to be able to debug simulation processes by attaching to them
with a debugger, or similar, you want to be able to use OMNEST just-in-time debugging
(debugger-attach-on-startup and debugger-attach-on-error configuration options),
you need to explicitly enable them.

To temporarily allow ptracing non-child processes, enter the following command:

$ echo 0 | sudo tee /proc/sys/kernel/yama/ptrace_scope

To permanently allow it, edit /etc/sysctl.d/10-ptrace.conf and change the line:

kernel.yama.ptrace_scope = 1

to read

kernel.yama.ptrace_scope = 0

28 Chapter 5. Ubuntu

CHAPTER

SIX

FEDORA 33

6.1 Supported Releases

This chapter provides additional information for installing OMNEST on Fedora installations.
The overall installation procedure is described in the Linux chapter.

The following Fedora release is covered:

• Fedora 33

It was tested on the following architectures:

• Intel 64-bit

6.2 Opening a Terminal

Open the Search bar, and type Terminal.

6.3 Installing the Prerequisite Packages

You can perform the installation using the graphical user interface or from the terminal,
whichever you prefer.

6.3.1 Command-Line Installation

To install the required packages, type in the terminal:

$ sudo dnf install make gcc gcc-c++ clang lld bison flex perl \
python3 python3-pip qt5-devel libxml2-devel \
zlib-devel doxygen graphviz webkitgtk

$ python3 -m pip install --user --upgrade numpy pandas \
matplotlib scipy seaborn posix_ipc

To use 3D visualization support in Qtenv, you should install OpenSceneGraph 3.2 or later
and osgEarth 2.7 or later (recommended):

$ sudo dnf install OpenSceneGraph-devel osgearth-devel

Note: You may opt to use gcc instead of the clang compiler and/or use the system default
linker instead of lld by setting the PREFER_CLANG and PREFER_LLD variables in the config-
ure.user file. In this case, you don’t have to install the clang and lld packages. If you do not
need the 3D visualization capabilities, you can disable them in the configure.user file, too.

29

Installation Guide, Release 6.0

To enable the optional parallel simulation support you will need to install the MPI package:

$ sudo dnf install openmpi-devel

Note that openmpi will not be available by default, it needs to be activated in every session
with the

$ module load mpi/openmpi-x86_64

command. When in doubt, use module avail to display the list of available modules. If you
need MPI in every session, you may add the module load command to your startup script
(.bashrc).

6.3.2 Graphical Installation

The graphical package manager can be launched by opening the Search bar and typing dnf.

Search for the following packages in the list. Select the checkboxes in front of the names, and
pick the latest version of each package.

The packages:

• make, bison, gcc, gcc-c++, clang, lld, flex, perl, python3, python3-pip, qt5-
devel, libxml2-devel, zlib-devel, webkitgtk, doxygen, graphviz, openmpi-devel,
OpenSceneGraph-devel, osgearth-devel

Click Apply, then follow the instructions.

Open a terminal and enter the following command to install the required Python packages:

$ python3 -m pip install --user --upgrade numpy pandas matplotlib scipy
→˓seaborn posix_ipc

30 Chapter 6. Fedora 33

CHAPTER

SEVEN

RED HAT

7.1 Supported Releases

This chapter provides additional information for installing OMNEST on Red Hat Enterprise
Linux installations. The overall installation procedure is described in the Linux chapter.

The following Red Hat release is covered:

• Red Hat Enterprise Linux Desktop Workstation 8.x

It was tested on the following architectures:

• Intel 64-bit

7.2 Opening a Terminal

Choose Applications > Accessories > Terminal from the menu.

7.3 Installing the Prerequisite Packages

You can perform the installation using the graphical user interface or from the terminal,
whichever you prefer.

Note: You will need Red Hat Enterprise Linux Desktop Workstation for OMNEST. The Desk-
top Client version does not contain development tools.

7.3.1 Command-Line Installation

To install the required packages, type in the terminal:

$ su -c 'yum install make gcc gcc-c++ clang lld bison flex perl \
python3 python3-pip qt-devel libxml2-devel zlib-devel doxygen graphviz'

$ python3 -m pip install --user --upgrade numpy pandas matplotlib scipy
→˓seaborn posix_ipc

To use 3D visualization support in Qtenv (recommended), you should install the
OpenSceneGraph-devel (3.2 or later) and osgEarth-devel (2.7 or later) packages. These pack-
ages are not available from the official RedHat repository so you may need to get them from
different sources (e.g. rpmfind.net).

31

Installation Guide, Release 6.0

Warning: The IDE requires GLIBC 2.28 version or later, so RedHat 6 and 7 is NOT
supported.

Note: You may opt to use gcc instead of the clang compiler and/or use the system default
linker instead of lld by setting the PREFER_CLANG and PREFER_LLD variables in the config-
ure.user file. In this case, you don’t have to install the clang and lld packages. If you do not
need the 3D visualization capabilities, you can disable them in the configure.user file, too.

To install additional (optional) packages for parallel simulation, type:

$ su -c 'yum install openmpi-devel'

Note that openmpi will not be available by default, it needs to be activated in every session
with the

$ module load openmpi_<arch>

command, where <arch> is your architecture (usually i386 or x86_64). When in doubt, use
module avail to display the list of available modules. If you need MPI in every session, you
may add the module load command to your startup script (.bashrc).`

7.3.2 Graphical Installation

The graphical installer can be launched by choosing Applications > Add/Remove Software
from the menu.

Search for the following packages in the list. Select the checkboxes in front of the names, and
pick the latest version of each package.

The packages:

• make, gcc, gcc-c++, clang, lld, bison, flex, perl, python3, qt-devel, libxml2-devel, zlib-
devel, doxygen, graphviz, openmpi-devel

Click Apply, then follow the instructions.

7.4 SELinux

You may need to turn off SELinux when running certain simulations. To do so, click on Sys-
tem > Administration > Security Level > Firewall, go to the SELinux tab, and choose Disabled.

You can verify the SELinux status by typing the sestatus command in a terminal.

Note: From OMNEST 4.1 on, makefiles that build shared libraries include the chcon -t
textrel_shlib_t lib<name>.so command that properly sets the security context for the
library. This should prevent the SELinux-related “cannot restore segment prot after reloc:
Permission denied” error from occurring, unless you have a shared library which was built
using an obsolete or hand-crafted makefile that does not contain the chcon command.

32 Chapter 7. Red Hat

CHAPTER

EIGHT

OPENSUSE

8.1 Supported Releases

This chapter provides additional information for installing OMNEST on openSUSE installa-
tions. The overall installation procedure is described in the Linux chapter.

The following openSUSE release is covered:

• openSUSE Leap 15.3

It was tested on the following architectures:

• Intel 64-bit

8.2 Opening a Terminal

Open the Search bar, and type Terminal.

8.3 Installing the Prerequisite Packages

You can perform the installation using the graphical user interface or from the terminal,
whichever you prefer.

8.3.1 Command-Line Installation

To install the required packages, type in the terminal:

$ sudo zypper install make gcc gcc-c++ clang lld bison flex perl \
python3 python3-pip libqt5-qtbase-devel libxml2-devel zlib-devel \
doxygen graphviz

$ python3 -m pip install --user --upgrade numpy pandas matplotlib scipy
→˓seaborn posix_ipc

Note: You may opt to use gcc instead of the clang compiler and/or use the system default
linker instead of lld by setting the PREFER_CLANG and PREFER_LLD variables in the config-
ure.user file. In this case, you don’t have to install the clang and lld packages. If you do not
need the 3D visualization capabilities, you can disable them in the configure.user file, too.

To use 3D visualization support in Qtenv (recommended), you should install the
OpenSceneGraph-devel (3.2 or later) and osgEarth-devel (2.7 or later) packages. These pack-
ages are not available from the official RedHat repository so you may need to get them from
different sources (e.g. rpmfind.net).

33

Installation Guide, Release 6.0

To enable the optional parallel simulation support you will need to install the MPI package:

$ sudo zypper install openmpi-devel

Note that openmpi will not be available by default, first you need to log out and log in again,
or source your .profile script:

$. ~/.profile

8.3.2 Graphical Installation

The graphical installer can be launched by opening the Search bar and typing Software Man-
agement.

Fig. 8.1: Yast Software Management

Search for the following packages in the list. Select the checkboxes in front of the names, and
pick the latest version of each package.

The packages:

• make, gcc, gcc-c++, clang, lld, bison, flex, perl, libqt5-qtbase-devel, libxml2-devel, zlib-
devel, doxygen, graphviz, openmpi-devel

Click Accept, then follow the instructions.

34 Chapter 8. OpenSUSE

CHAPTER

NINE

GENERIC UNIX

9.1 Introduction

This chapter provides additional information for installing OMNEST on Unix-like operating
systems not specifically covered by this Installation Guide. The list includes FreeBSD, Solaris,
and Linux distributions not covered in other chapters.

Note: In addition to Windows and macOS, the Simulation IDE will only work on Linux
x86/arm 64-bit platforms. Other operating systems (FreeBSD, Solaris, etc.) and architec-
tures may still be used as simulation platforms, without the IDE.

9.2 Dependencies

The following packages are required for OMNEST to work:

build-essential, GNU make, gcc, g++, bison (3.0+), flex, perl, python3 These packages
are needed for compiling OMNEST and simulation models, and also for certain OMNEST
tools to work.

It is also recommended to install the clang and lld package as they provide faster compilation
and linking.

Note: You may opt to use gcc instead of the clang compiler and/or use the system default
linker instead of lld by setting the PREFER_CLANG and PREFER_LLD variables in the config-
ure.user file. If you do not need the 3D visualization capabilities, you can disable them in the
configure.user file, too.

Warning: The IDE requires GLIBC 2.28 version or later, so you will need at least Debian
10, RedHat 8 or Ubuntu 18.10 to run the IDE.

The following packages are strongly recommended, because their absence results in severe
feature loss:

Qt 5.9 or later Required by the Qtenv simulation runtime environment. You need the devel
packages that include header files as well.

OpenSceneGraph (3.4+) and osgEarth (2.9+) These packages will enable 3D visualization
in Qtenv. You need the devel packages that include header files as well.

The following packages are required if you want to take advantage of some advanced OMNEST
features:

35

Installation Guide, Release 6.0

LibXML2 LibXML2 is needed for OMNEST to be able to DTD validate an XML file. The devel
packages (that include the header files) are needed.

GraphViz, Doxygen These packages are used by the NED documentation generation feature
of the IDE. When they are missing, documentation will have less content.

MPI openmpi or some other MPI implementation is required to support parallel simulation
execution.

Akaroa Implements Multiple Replications In Parallel (MRIP). Akaroa can be downloaded from
the project’s website.

The exact names of these packages may differ across distributions.

9.3 Determining Package Names

If you have a distro unrelated to the ones covered in this Installation Guide, you need to
figure out what is the established way of installing packages on your system, and what are
the names of the packages you need.

9.3.1 Qt

If your platform does not have suitable Qt packages, you may still use OMNEST to run
simulations from the command line. To disable the Qtenv runtime environment, use:

$./configure WITH_QTENV=no

This will prevent the build system to link with Qt libraries. It is also recommended if you are
installing OMNEST from a remote terminal session.

9.3.2 MPI

OMNEST is not sensitive to the particular MPI implementation. You may use OpenMPI, or
any other standards-compliant MPI package.

9.4 Downloading and Unpacking

Download OMNEST from https://omnest.com. Make sure you select to download the generic
archive, omnest-6.0-core.tgz.

Copy the archive to the directory where you want to install it. This is usually your home
directory, /home/<you>. Open a terminal, and extract the archive using the following com-
mand:

$ tar xvfz omnest-6.0-core.tgz

This will create an omnest-6.0 subdirectory with the OMNEST files in it.

36 Chapter 9. Generic Unix

https://omnest.com

Installation Guide, Release 6.0

9.5 Environment Variables

In general OMNEST requires that certain environment variables are set and the omnest-6.
0/bin directory is in the PATH. Source the setenv script to set up all these variables.

$ cd omnest-6.0
$ source setenv

To set the environment variables permanently, edit .profile or .zprofile in your home
directory and add a line something like this:

[-f "$HOME/omnest-6.0/setenv"] && source "$HOME/omnest-6.0/setenv"

Note: If you use a shell other than bash, consult the man page of that shell to find out which
startup file to edit, and how to set and export variables.

9.6 Configuring and Building OMNEST

In the top-level OMNEST directory, type:

$./configure

The configure script detects installed software and configuration of your system. It writes
the results into the Makefile.inc file, which will be read by the makefiles during the build
process.

Fig. 9.1: Configuring OMNEST

Note: If there is an error during configure, the output may give hints about what went
wrong. Scroll up to see the messages. (Use Shift+PgUp; you may need to increase the scroll-
back buffer size of the terminal and re-run ./configure.) The script also writes a very
detailed log of its operation into config.log to help track down errors. Since config.log is

9.5. Environment Variables 37

Installation Guide, Release 6.0

very long, it is recommended that you open it in an editor and search for phrases like error
or the name of the package associated with the problem.

The configure script tries to build and run small test programs that are using specific
libraries or features of the system. You can check the config.log file to see which test
program has failed and why. In most cases the problem is that the script cannot figure
out the location of a specific library. Specifying the include file or library location in the
configure.user file and then re-running the configure script usually solves the problem.

When ./configure has finished, you can compile OMNEST. Type in the terminal:

$ make

Fig. 9.2: Building OMNEST

Tip: To take advantage of multiple processor cores, add the -j8 option (for 8 cores) to the
make command line.

Note: The build process will not write anything outside its directory, so no special privileges
are needed.

Tip: The make command will seemingly compile everything twice. This is because both
debug and optimized versions of the libraries are built. If you only want to build one set of
the libraries, specify MODE=debug or MODE=release:

38 Chapter 9. Generic Unix

Installation Guide, Release 6.0

9.7 Verifying the Installation

You can now verify that the sample simulations run correctly. For example, the aloha simu-
lation is started by entering the following commands:

$ cd samples/aloha
$./aloha

By default, the samples will run using the Qtenv environment. You should see nice gui
windows and dialogs.

9.8 Starting the IDE

Note: The IDE is supported only on 64-bit versions of Windows, macOS and Linux.

You can run the IDE by typing the following command in the terminal:

$ omnest

Fig. 9.3: The Simulation IDE

If you would like to be able to access the IDE from the application launcher or via a desktop
shortcut, run one or both of the commands below:

$ make install-menu-item
$ make install-desktop-icon

Note: The above commands assume that your system has the xdg commands, which most
modern distributions do.

9.7. Verifying the Installation 39

Installation Guide, Release 6.0

9.9 Optional Packages

9.9.1 Akaroa

If you wish to use Akaroa, it must be downloaded, compiled, and installed manually before
installing OMNEST.

Note: As of version 2.7.9, Akaroa only supports Linux and Solaris.

Download Akaroa 2.7.9 from: http://www.cosc.canterbury.ac.nz/research/RG/net_sim/
simulation_group/akaroa/download.chtml

Extract it into a temporary directory:

$ tar xfz akaroa-2.7.9.tar.gz

Configure, build and install the Akaroa library. By default, it will be installed into the /usr/
local/akaroa directory.

$./configure
$ make
$ sudo make install

Go to the OMNEST directory, and (re-)run the configure script. Akaroa will be automatically
detected if you installed it to the default location.

SystemC

To enable SystemC integration, set WITH_SYSTEMC=yes in the configure.user file, run
configure and then rebuild your project. You can check the systemc examples in the
samples/systemc-embedding directory.

40 Chapter 9. Generic Unix

http://www.cosc.canterbury.ac.nz/research/RG/net_sim/simulation_group/akaroa/download.chtml
http://www.cosc.canterbury.ac.nz/research/RG/net_sim/simulation_group/akaroa/download.chtml

CHAPTER

TEN

BUILD OPTIONS

10.1 Configure.user Options

The configure.user file contains several options that can be used to fine-tune the simula-
tion libraries.

You always need to re-run the configure script in the installation root after changing the
configure.user file.

$./configure

After this step, you have to remove all previous libraries and recompile OMNEST:

$ make cleanall
$ make

Options:

PREFER_CLANG=no If both gcc and clang are installed on your system, setting this variable
to no will force the configure script to use gcc as C++ compiler.

WITH_SYSTEMC=yes Use this variable to enable integration whith the bundled SystemC ref-
erence implementation.

<COMPONENTNAME>_CFLAGS, <COMPONENTNAME>_LIBS The configure.user file contains
variables for defining the compile and link options needed by various external libraries.
By default, the configure command detects these automatically, but you may override
the auto detection by specifying the values by hand. (e.g. <COMP>_CFLAGS=-I/path/
to/comp/includedir and <COMP>_LIBS=-L/path/to/comp/libdir -lnameoflib.)

WITH_PARSIM=no Use this variable to explicitly disable parallel simulation support in
OMNEST.

WITH_NETBUILDER=no This option allows you to leave out the NED language parser and the
network builder. (This is needed only if you are building your network with C++ API calls
and you do not use the built-in NED language parser at all.)

WITH_QTENV=no This will prevent the build system to link with the Qt libraries. Use this
option if your platform does not have a suitable Qt package or you will run the simulation
only in command line mode. (i.e. You want to run OMNEST in a remote terminal
session.)

WITH_OSG=no This will prevent the build system to use OpenScreenGraph which is used for
3D visualization in Qtenv.

WITH_OSGEARTH=no This will prevent the build system to use osgEarth which is used for
2D/3D mapping and visualization in Qtenv.

CFLAGS_[RELEASE/DEBUG] To change the compiler command line options the build process
is using, you should specify them in the CFLAGS_RELEASE and CFLAGS_DEBUG variables.
By default, the flags required for debugging or optimization are detected automatically

41

Installation Guide, Release 6.0

by the configure script. If you set them manually, you should specify all options you
need. It is recommended to check what options are detected automatically (check the
Makefile.inc after running configure and look for the CFLAGS_[RELEASE/DEBUG]
variables.) and add/modify those options manually in the configure.user file.

LDFLAGS Linker command line options can be explicitly set using this variable. It is rec-
ommended to check what options are detected automatically (check the Makefile.inc
after running configure and look for the LDFLAGS variable.) and add/modify those
options manually in the configure.user file.

SHARED_LIBS This variable controls whether the OMNEST build process will create static or
dynamic libraries. By default, the OMNEST runtime is built as a set of shared libraries. If
you want to build a single executable from your simulation, specify SHARED_LIBS=no in
configure.user to create static OMNEST libraries and then reconfigure (./configure)
and recompile OMNEST (make cleanall; make). Once the OMNEST static libraries are
correctly built, your own project have to be rebuilt, too. You will get a single, statically
linked executable, which requires only the NED and INI files to run.

Warning: It is important to completely delete the OMNEST libraries (make cleanall) and
then rebuild them, otherwise it cannot be guaranteed that the created simulations are
linked against the correct libraries.

Note: The USE_DOUBLE_SIMTIME and WITHOUT_CPACKET options are no longer supported.
They were introduced in OMNEST 4.0 to help porting model code from OMNEST 3.x, and
having fulfilled their role, they were removed in OMNEST 5.0. If you still have old model code
to port, use OMNEST 4.x.

10.2 Moving the Installation

When you build OMNEST on your machine, several directory names are compiled into the
binaries. This makes it easier to set up OMNEST in the first place, but if you rename the
installation directory or move it to another location in the file system, the built-in paths
become invalid and the correct paths have to be supplied via environment variables.

The following environment variables are affected (in addition to PATH, which also needs to be
adjusted):

OMNETPP_IMAGE_PATH This variable contains the list of directories where Qtenv looks for
icons. Set it to point to the images/ subdirectory of your OMNEST installation.

LD_LIBRARY_PATH This variable contains the list of additional directories where shared li-
braries are looked for. Initially, LD_LIBRARY_PATH is not needed because shared li-
braries are located via the rpath mechanism. When you move the installation, you need
to add the lib/ subdirectory of your OMNEST installation to LD_LIBRARY_PATH.

Note: On macOS, DYLD_LIBRARY_PATH is used instead of LD_LIBRARY_PATH. On Windows,
the PATH variable must contain the directory where shared libraries (DLLs) are present.

42 Chapter 10. Build Options

Installation Guide, Release 6.0

10.3 Using Different Compilers

By default, the configure script detects the following compilers automatically in the path:

• Intel compiler (icc, icpc)

• GNU C/C++ (gcc, g++)

• Clang (clang, clang++)

• Clang/C2 (from Microsoft Visual Studio)

• Sun Studio (cc, cxx)

• IBM compiler (xlc, xlC)

If you want to use compilers other than the above ones, you should specify the compiler name
in the CC and CXX variables, and re-run the configuration script.

Note: Different compilers may have different command line options. If you use a com-
piler other than the default gcc, you may have to revise the CFLAGS_[RELEASE/DEBUG] and
LDFLAGS variables.

10.3. Using Different Compilers 43

	General Information
	Introduction
	Supported Platforms

	Windows - Using the Installer
	Supported Windows Versions
	Pre-installation Steps
	Installing OMNEST
	Using the IDE
	Using OMNEST with the MinGW GCC Compiler
	Compiling Simulations on the Command Line
	Recompiling OMNEST

	Using OMNEST with Microsoft Visual Studio Clang compiler
	Compiling Simulations on the Command Line (MS ABI)
	Compiling Simulations from the IDE
	Recompiling OMNEST

	Switching Compilers
	Additional Packages
	MPI
	Akaroa
	SystemC

	macOS
	Supported Releases
	Installing the Prerequisite Packages
	Enabling Development Mode in Terminal
	Debugging Unsigned Code
	Running OMNEST on Apple Silicon
	Additional Steps Required on macOS to Use the Debugger
	Downloading and Unpacking OMNEST
	Environment Variables
	Configuring and Building OMNEST
	Verifying the Installation
	Starting the IDE
	Using the IDE
	Reconfiguring the Libraries
	Additional Packages
	OpenMPI
	Akaroa
	SystemC

	Linux
	Supported Linux Distributions
	Installing the Prerequisite Packages
	Downloading and Unpacking
	Environment Variables
	Configuring and Building OMNEST
	Verifying the Installation
	Starting the IDE
	Using the IDE
	Reconfiguring the Libraries
	Additional Packages
	Qtenv
	Akaroa
	SystemC

	Nemiver

	Ubuntu
	Supported Releases
	Opening a Terminal
	Installing the Prerequisite Packages
	Command-Line Installation
	Graphical Installation
	Post-Installation Steps
	Setting Up Debugging

	Fedora 33
	Supported Releases
	Opening a Terminal
	Installing the Prerequisite Packages
	Command-Line Installation
	Graphical Installation

	Red Hat
	Supported Releases
	Opening a Terminal
	Installing the Prerequisite Packages
	Command-Line Installation
	Graphical Installation

	SELinux

	OpenSUSE
	Supported Releases
	Opening a Terminal
	Installing the Prerequisite Packages
	Command-Line Installation
	Graphical Installation

	Generic Unix
	Introduction
	Dependencies
	Determining Package Names
	Qt
	MPI

	Downloading and Unpacking
	Environment Variables
	Configuring and Building OMNEST
	Verifying the Installation
	Starting the IDE
	Optional Packages
	Akaroa
	SystemC

	Build Options
	Configure.user Options
	Moving the Installation
	Using Different Compilers

